skip to main content


Search for: All records

Creators/Authors contains: "Amrouch, Hussam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2024
  2. Energy efficiency has emerged as a key concern for modern processor design, especially when it comes to embedded and mobile devices. It is vital to accurately quantify the power consumption of different micro-architectural components in a CPU. Traditional RTL or gate-level power estimation is too slow for early design-space exploration studies. By contrast, existing architecture-level power models suffer from large inaccuracies. Recently, advanced machine learning techniques have been proposed for accurate power modeling. However, existing approaches still require slow RTL simulations, have large training overheads or have only been demonstrated for fixed-function accelerators and simple in-order cores with predictable behavior. In this work, we present a novel machine learning-based approach for microarchitecture-level power modeling of complex CPUs. Our approach requires only high-level activity traces obtained from microarchitecture simulations. We extract representative features and develop low-complexity learning formulations for different types of CPU-internal structures. Cycle-accurate models at the sub-component level are trained from a small number of gate-level simulations and hierarchically composed to build power models for complete CPUs. We apply our approach to both in-order and out-of-order RISC-V cores. Cross-validation results show that our models predict cycle-by-cycle power consumption to within 3% of a gate-level power estimation on average. In addition, our power model for the Berkeley Out-of-Order (BOOM) core trained on micro-benchmarks can predict the cycle-by-cycle power of real-world applications with less than 3.6% mean absolute error. 
    more » « less
  3. In this work, we present a novel approach to real-time tracking of full-chip heatmaps for commercial off-the-shelf microprocessors based on machine-learning. The proposed post-silicon approach, named RealMaps, only uses the existing embedded temperature sensors and workload-independent utilization information, which are available in real-time. Moreover, RealMaps does not require any knowledge of the proprietary design details or manufacturing process-specific information of the chip. Consequently, the methods presented in this work can be implemented by either the original chip manufacturer or a third party alike, and is aimed at supplementing, rather than substituting, the temperature data sensed from the existing embedded sensors. The new approach starts with offline acquisition of accurate spatial and temporal heatmaps using an infrared thermal imaging setup while nominal working conditions are maintained on the chip. To build the dynamic thermal model, a temporal-aware long-short-term-memory (LSTM) neutral network is trained with system-level features such as chip frequency, instruction counts, and other high-level performance metrics as inputs. Instead of a pixel-wise heatmap estimation, we perform 2D spatial discrete cosine transformation (DCT) on the heatmaps so that they can be expressed with just a few dominant DCT coefficients. This allows for the model to be built to estimate just the dominant spatial features of the 2D heatmaps, rather than the entire heatmap images, making it significantly more efficient. Experimental results from two commercial chips show that RealMaps can estimate the full-chip heatmaps with 0.9C and 1.2C root-mean-square-error respectively and take only 0.4ms for each inference which suits well for real-time use. Compared to the state of the art pre-silicon approach, RealMaps shows similar accuracy, but with much less computational cost. 
    more » « less